

Safe Model-based Control from Signal Temporal Logic Specifications Using Recurrent Neural Networks Wenliang Liu¹, Mirai Nishioka², Calin Belta¹

¹Boston University, MA, USA, ²Commonwealth School, MA, USA

I C R A

Introduction

Temporal logics are widely used as specification languages for robotic systems due to their rich expressivity and similarity to natural language. In this work, we apply model-based Reinforcement Learning (RL) to simultaneously learn the system dynamics and a control policy that satisfies a given Signal Temporal Logic (STL) task. Compared with existing approaches, our algorithm:

- requires no demonstrations (as opposed imitation learning);
- $\bullet\,$ is data-efficient compared to model-free RL approaches;
- $\bullet\,$ enables real-time execution after training;
- utilizes Control Barrier Function (CBF) to improve safety.

Signal Temporal Logic

STL, which is defined over real-valued signals, can express complex, time-related task specifications. Informally, an STL formula ϕ is made of:

- predicates: $l(x_t) \ge 0, x_t \in \mathbb{R}^n;$
- logical operators: \land (AND), \lor (OR), \neg (NOT);
- temporal operators: \mathbf{U}_I (until), \mathbf{F}_I (eventually), \mathbf{G}_I (always), where I is a time interval.

Qualitative semantics: whether a formula is satisfied; Quantitative semantics (robustness): how strongly a formula is satisfied. Example: $\mathbf{F}_{[0,5]}Reg_1 \wedge \mathbf{F}_{[5,10]}Reg_2 \wedge \mathbf{G}_{[0,10]} \neg Obs$.

Problem Formulation

Given:

- an STL formula φ with time horizon T;
- a control affine system with **unknown dynamcis** $x_{t+1} = f(x_t) + g(x_t)u_t$;
- a distribution p for the initial condition x_0 ,

find optimal parameters W^* for a Recurrent Neural Network (RNN) control policy $u_t = \pi(x_{0:t}, W)$ that maximizes the expected STL robustness $\rho(x_{0:T}, \varphi)$ over distribution p:

$$W^{*} = \arg\max_{W} E_{p(x_{0})}[\rho(\varphi, x_{0:T})]$$

s.t. $x_{t+1} = f(x_{t}) + g(x_{t})\pi(x_{0:t}; W)$ $t = 0$

t.
$$x_{t+1} = f(x_t) + g(x_t)\pi(x_{0:t}; W), t = 0, \dots, T-1$$

(1)

Remark: We use RNN because memory is necessary for the controller [1].

Model-Based Safe Policy Search

System Model Learning:

We use a probabilistic model to reduce the effect of model bias, which is implemented as neural networks \mathcal{F} and \mathcal{G} with **dropout** layers [2]:

- $\hat{x}_{t+1} = \mathcal{F}(x_t; W_f, Z_f) + \mathcal{G}(x_t; W_g, Z_g)u_t,$
- W_f, W_g : neural network parameters;
- Z_f, Z_g : dropout masks.

Simulation Results

Run the system and collect transition data to simutaneously train the two neural networks. When running the system, **CBFs** are used **under the consideration of model uncertainty** to improve safety.

Control Policy Improvement:

Substitute the learned model to (1) and solve the optimization problem. In specific, we

- use the model to roll out the trajectory;
- $\bullet\,$ compute the STL robustness and its gradient;
- update the policy using the gradient.

At each optimization step, sample a new set of initial states and system dropout masks. Use the mean value to approximate the expectation.

Model-Based Safe Policy Search: Repeatedly train the system model and the control policy (called a cycle) until convergance.

Experiment Results

We used 3 ground vehicles in a fire fighting scenario:

 $\varphi_2 = \wedge_{k=1}^2 \left(\mathbf{F}_{[0,\frac{8}{\Delta t}]}(p^k \in R_F) \wedge \mathbf{F}_{[\frac{8}{\Delta t},\frac{15}{\Delta t}]}(p^k \in R_{Hos}) \right) \wedge \mathbf{F}_{[0,\frac{10}{\Delta t}]}(p^3 \in R_{Hyd})$

 $\wedge \mathbf{G}_{[\frac{10}{\Delta t},\frac{15}{\Delta t}]}(p^{3} \in R_{F}) \wedge_{i,j \in \{1,2,3\}, i \neq j} \mathbf{G}_{[0,\frac{15}{\Delta t}]}(\|p^{i}-p^{j}\|^{2} \ge d^{2}) \wedge_{k=1}^{3} \mathbf{G}_{[0,\frac{15}{\Delta t}]}(p^{k} \in R_{M})$

Scan for the video

- Collected 2372 transition data in 4 cycles of training (20 minutes), with the system running for about 13 minutes.
- Policy execution times: 0.01s, which enables real time control.
- Success rate: 100%.

References

- W. Liu, N. Mehdipour, and C. Belta, "Recurrent neural network controllers for signal temporal logic specifications subject to safety constraints," *IEEE Control* Systems Letters, vol. 6, pp. 91–96, 2021.
- [2] Y. Gal and Z. Ghahramani, "Dropout as a bayesian approximation: Representing model uncertainty in deep learning," in *international conference on machine learning*. PMLR, 2016, pp. 1050–1059.

(a) Pick

(b) Place

Testing results including success rate γ , unsafe rate β , mean robustness $\bar{\rho}$:

We simulated a Baxter robot, which has a 7 DOF manipulator. $x_t \in \mathbb{R}^{14}$ is

the joint angles and velocities, $u_t \in \mathbb{R}^7$ is the torques. Consider the following

 $\wedge (\mathbf{G}_{[0,\frac{6}{\Delta t}]}\mathbf{q} \in V_{30}) \wedge (\mathbf{G}_{[0,\frac{6}{\Delta t}]}p_x > x_{body}) \wedge (\mathbf{G}_{[0,\frac{6}{\Delta t}]}p_z > h_{tb}) \wedge (\mathbf{G}_{[0,\frac{6}{\Delta t}]}\mathbf{p} \notin Obs)$

STL formula for a Pick and Place task with obstacle avoidance:

 $\varphi_1 = \left(\mathbf{F}_{[0,\frac{2.5}{\Delta t}]} (\mathbf{G}_{[0,\frac{0.5}{\Delta t}]} \mathbf{p} \in R_{pick}) \right) \land \left(\mathbf{F}_{[\frac{3}{\Delta t},\frac{5.5}{\Delta t}]} (\mathbf{G}_{[0,\frac{0.5}{\Delta t}]} \mathbf{p} \in R_{place}) \right)$

	w/ CBF			w/o CBF		
	γ	β	$\bar{ ho}$	γ	β	$\bar{\rho}$
Cycle 1	0%	10%	-0.4807	0%	24%	-0.7224
Cycle 2	2%	0%	-0.0973	14%	5%	-0.0880
Cycle 3	14%	0%	-0.0235	22%	0%	-0.0071
Cycle 4	83%	0%	0.0169	87%	0%	0.0192
Cycle 5	100%	0%	0.0401	100%	0%	0.0419

Testing results show that our algorithm achieves a high success rate, and the use of CBFs greatly reduces unsafe rate. Training costs 50 minutes, with 180 system runs (a small number compared with model-free methods)