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Introduction

Temporal logics are widely used as specification languages for robotic systems
due to their rich expressivity and similarity to natural language. In this work,
we apply model-based Reinforcement Learning (RL) to simultaneously learn
the system dynamics and a control policy that satisfies a given Signal Temporal
Logic (STL) task. Compared with existing approaches, our algorithm:

• requires no demonstrations (as opposed imitation learning);

• is data-efficient compared to model-free RL approaches;

• enables real-time execution after training;

• utilizes Control Barrier Function (CBF) to improve safety.

Signal Temporal Logic

STL, which is defined over real-valued signals, can express complex, time-
related task specifications. Informally, an STL formula φ is made of:

• predicates: l(xt) ≥ 0, xt ∈ R
n;

• logical operators: ∧ (AND), ∨ (OR), ¬ (NOT);

• temporal operators: UI (until), FI (eventually), GI (always), where I

is a time interval.

Qualitative semantics: whether a formula is satisfied;
Quantitative semantics (robustness): how strongly a formula is satisfied.
Example: F[0,5]Reg1 ∧ F[5,10]Reg2 ∧G[0,10]¬Obs.

Problem Formulation

Given:

• an STL formula ϕ with time horizon T ;

• a control affine system with unknown dynamcis xt+1 = f(xt) + g(xt)ut;

• a distribution p for the initial condition x0,

find optimal parameters W ∗ for a Recurrent Neural Network (RNN) control
policy ut = π(x0:t,W ) that maximizes the expected STL robustness ρ(x0:T , ϕ)
over distribution p:

W ∗ = argmax
W

Ep(x0)[ρ(ϕ, x0:T )]

s.t. xt+1 = f(xt) + g(xt)π(x0:t;W ), t = 0, . . . , T − 1
(1)

Remark: We use RNN because memory is necessary for the controller [1].

Model-Based Safe Policy Search

System Model Learning:
We use a probabilistic model to reduce the effect
of model bias, which is implemented as neural
networks F and G with dropout layers [2]:

x̂t+1 = F(xt;Wf , Zf ) + G(xt;Wg, Zg)ut,

• Wf , Wg: neural network parameters;

• Zf , Zg: dropout masks.

Run the system and collect transition data to
simutaneously train the two neural networks.
When running the system, CBFs are used un-
der the consideration of model uncer-
tainty to improve safety.

Control Policy Improvement:
Substitute the learned model to (1) and solve
the optimization problem. In specific, we

• use the model to roll out the trajectory;

• compute the STL robustness and its gradient;

• update the policy using the gradient.

At each optimization step, sample a new set of
initial states and system dropout masks. Use
the mean value to approximate the expectation.

Model-Based Safe Policy Search:
Repeatedly train the system model and the con-
trol policy (called a cycle) until convergance.

Simulation Results

We simulated a Baxter robot, which has a 7 DOF manipulator. xt ∈ R
14 is

the joint angles and velocities, ut ∈ R
7 is the torques. Consider the following

STL formula for a Pick and Place task with obstacle avoidance:
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Testing results including success rate γ, unsafe rate β, mean robustness ρ̄:

w/ CBF w/o CBF
γ β ρ̄ γ β ρ̄

Cycle 1 0% 10% -0.4807 0% 24% -0.7224
Cycle 2 2% 0% -0.0973 14% 5% -0.0880
Cycle 3 14% 0% -0.0235 22% 0% -0.0071
Cycle 4 83% 0% 0.0169 87% 0% 0.0192
Cycle 5 100% 0% 0.0401 100% 0% 0.0419

Testing results show that our algorithm achieves a high success rate, and the
use of CBFs greatly reduces unsafe rate. Training costs 50 minutes, with 180
system runs (a small number compared with model-free methods)

Experiment Results

We used 3 ground vehicles in a fire fighting scenario:
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Scan for the video
of the simulation and
experiment:

• Collected 2372 transition data in 4 cycles of training (20 minutes), with the
system running for about 13 minutes.

• Policy execution times: 0.01s, which enables real time control.

• Success rate: 100%.
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